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Abstract

The blood–brain barrier (BBB) is considered to be the main barrier to drug transport into the central nervous system (CNS). The BBB
restricts the passive diffusion of many drugs from blood to brain. The ease with which any particular drug diffuses across the BBB is deter-
mined largely by the molecular features of drugs, and it is therefore possible to predict the BBB permeability of a drug from its molecular
structure. Biopartitioning micellar chromatography (BMC), a mode of micellar liquid chromatography that uses micellar mobile phases of
Brij35 in adequate experimental conditions, can be useful in mimicking the drug partitioning process into biological systems. Retention in
BMC depends on the hydrophobicity, electronic and steric properties of drugs. In this paper, the usefulness of BMC for predicting the BBB
penetration ability of drugs expressed as the brain/blood distribution coefficient (BB) is demonstrated. A multiple linear regression (MLR)
model that relates the BB distribution coefficients data with BMC retention data and total molar charge is proposed. The model is obtained
using 44 heterogeneous drugs including, neutral, anionic, and cationic compounds. A comparison with other reported methodologies to predict
the BBB permeability is also presented.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The development of combinatorial chemistry has made
possible to synthesize hundreds of potentially active drugs.
The need to find a tool for estimating the biopharmaceutical
parameters of new compounds supports the postulation of
predictive models as a complement to conventional assays
that can reduce the use of animal experimentation, the cost
and can save time.

To directly affect central nervous system cells a drug must
appear in the fluid environment of these cells. The distri-
bution of many drugs to brain is quite different from that
to other organs. The major factor creating this difference
is the blood–brain barrier (BBB). The blood–brain barrier
is formed by high resistance tight junctions between adja-
cent endothelial cells in the cerebral micro-vessel walls and
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between the epithelial cells of the chord plexus. This tight
junction inhibits the passage of hydrophilic compounds ex-
cluding molecules with a diameter larger than 20 Å. Thus,
the hydrophobicity of compounds has long been considered
to determine the rate at which they are capable of entering
the brain via the lipid-mediated pathway[1].

Although some drugs use transporters, most drugs enter
the brain by passive diffusion through the endothelial cells,
which depends on their hydrophobicity, degree of ionization,
molecular weight (MW), relative brain tissue, and plasma
bindings. The blood brain barrier can be the major imped-
iment for the treatment of central nervous system diseases,
for many drugs are unable to reach this organ at therapeutic
concentrations[2,3]. Prediction of passage across the blood
brain barrier is of great importance for centrally acting drugs
or for peripherally acting drugs that should be devoid of
CNS side-effects. Convenient and reliable methods for pre-
dicting distribution of these agents between blood and brain
are highly desirable.

1570-0232/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
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Several techniques have been utilized to quantify the
BBB permeability that can be classified as in vivo and in
vitro techniques[4]. In vivo methods include brain homog-
enization, cerebrospinal fluid (CSF) sampling, voltamme-
try, autoradiography, nuclear magnetic resonance (NMR)
spectroscopy, positron emission tomography (PET), intrac-
erebral microdialysis, and brain uptake index (BUI) deter-
mination. In most of them chromatographic techniques are
used as adjunct methods. In general, in vivo methods are
complicated, time-consuming and require the synthesis of
test compounds in radiolabeled form[1,5,6].

To circumvent the problems associated with screening
experimental compounds in animals, a number of in vitro
models for predicting brain penetration have recently ap-
peared which include computational methods that correlate
physicochemical parameters or molecular descriptors with
brain–blood distribution[7–15]. Cell culture models such as
bovine brain micro-vessel endothelial cell (BMECs) lines
[16,17] have also been used for transport studies.

The hydrophobicity of a solute as measured by its parti-
tion behavior between octanol and water (logP) has been
widely used to model transmembrane permeability and the
brain–blood equilibrium distribution ratio. This kind of
correlation was graphically represented by Pardridge[18].
However, the octanol/water partition coefficient is unfortu-
nately an unreliable predictor for drug penetration across
cellular barriers. The observations that logP alone is un-
able to account for differences between drugs’ brain–blood
concentrations ratios was demonstrated by Young et al.[5].
A better correlation was found by Abraham and Chadka
[19] using the logarithm of the cyclohexane–water parti-
tion coefficient (logPcyh). Upon reanalyzing the data of
Young et al., Van de Waterbeemd and Kansy[20] obtained
a two-parameter regression equation describing the brain
uptake in terms of the calculated molar volume (VM) of the
molecule and a descriptor derived from the measurements
of the alkane–water partition coefficient.

Levin [21] and Conford et al.[22] found good correla-
tions when they assumed that permeability is a function of
the diffusion coefficient and that variability in diffusion co-
efficients of small molecules approximates the square root
of the molecular weight.

Chromatography is a powerful technique for measuring
of the physicochemical parameters of drugs. Different chro-
matographic strategies have been proposed in order to model
drug-membrane transport. For instance, phospholipids have
been covalently immobilized to silica propyl amide parti-
cles[23] and liposomes have been immobilized in capillary
continuous beds with covalently linked C4 or C8 alkyl lig-
ands[24]. The relationship between immobilized artificial
membrane chromatographic retention and the brain penetra-
tion of drugs has been reported by Salminen et al.[25] and
Reichel and Begley[26].

Our research group has demonstrated that in adequate ex-
perimental conditions the use of polyoxyethylene(23)lauryl
ether (Brij35) micellar mobile phases and C18 reversed sta-

tionary phases permits drug biopartitioning simulation. This
technique, that we have called biopartitioning micellar chro-
matography (BMC), has demonstrated to be useful in de-
scribing the biological behavior of different kinds of drugs
[27–33]and to predict human oral drug absorption, skin per-
meability, and ocular tissue permeability of drugs[34–38].
The success of BMC in constructing these models could be
attributed to the fact that the characteristics of the BMC sys-
tems show similarities with the biological barriers and ex-
tracellular fluids. Therefore, the retention of a drug in BMC,
which depends on its hydrophobic, electronic, and steric
properties, reflects adequately the extension of the bioparti-
tioning process.

In this paper, the usefulness and limitations of bioparti-
tioning micellar chromatography for predicting drug pene-
tration across the blood–brain barrier are studied.

2. Experimental

2.1. Instrumental and measurement

A Hewlett-Packard 1100 chromatograph with an isocratic
pump, an UV-Vis detector and a HP Vectra computer, were
used (Palo Alto, CA, USA). Data acquisition and processing
were performed on a HP Vectra XM computer (Amsterdam,
The Netherlands) equipped with HP-Chemstation software
(A0402, 1996). The solutions were injected into the chro-
matograph through a Rheodyne valve (Cotati, CA, USA),
with a 20�l loop. Kromasil octadecyl-silane C18 columns
(5�m, 150 mm×4.6 mm and 50 mm×4.6 mm i.d.) (Schar-
lab, Barcelona, Spain) were used. The mobile phase flow rate
was 1 ml min−1. All the assays were carried out at 36.5◦C.

2.2. Reagents and standards

Micellar mobile phases of 0.04 M polyoxyethylene(23)
lauryl ether (Brij35, Acros Chimica, Geel, Belgium, critical
micellar concentration, CMC, 1×10−4 M) were prepared by
dissolving Brij35 in 0.05 M phosphate buffer at pH 7.4. The
phosphate buffer solutions were prepared with disodium hy-
drogen phosphate and sodium di-hydrogen phosphate (an-
alytical reagent, Panreac, Barcelona, Spain). In order to
reproduce the osmotic pressure of biological fluids, NaCl
(9.20 g/l, Panreac) was added to the micellar mobile phase.

The compounds used in this study were obtained from
different sources: ethanol, benzene, 1-propanol, and toluene
(Scharlab, Barcelona, Spain); amobarbital, atenolol, car-
bamazepine epoxide, codeine, desipramine, haloperidol,
hexobarbital, promazine, pyrilamine, thioridazine, and tri-
fluoperazine (Sigma, St. Louis, MO USA); acetaminophen,
acetylsalicic acid, amitriptyline, caffeine, carbamazepine,
cimetidine, clonidine, diazepam, fluphenazine, hydroxizine,
imipramine, ranitidine, theophylline, and estrone (Guinama,
Valencia, Spain); salicylic acid, antipyrine (Panreac, Mont-
plet & Esteban S.A., Barcelona, Spain), bromperidol
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Table 1
Logarithm of the brain–blood distribution coefficient (log BB), logarithm of the retention factor in BMC (logkBMC) and physico-chemical and structural descriptor values tested for log BB modeling

Compounds Compound
number

log BB logkBMC logP pKan α MW MR (cm3) MV (cm3) Pr (cm3) Polarizability
(×1024) (cm3)

Acetaminophen 9 −0.31 0.66 0.46 9.38 (A) −0.0104 151.16 42.40 120.90 326.00 16.81
Acetylsalicylic acid 7 −0.50 0.57 1.19 3.5 (A) −0.9999 180.16 44.52 139.50 370.90 17.65
Alprazolam 19 0.04 1.44 2.12 6.2 (B) 0.0594 308.77 88.22 225.50 606.20 34.47
Amitriptyline 35 0.90 2.37 5.04 9.42 (B) 0.9905 277.41 91.52 257.70 675.10 36.28
Amobarbital 18 0.04 1.58 2.07 7.8 (A) −0.2847 226.27 57.95 211.40 507.30 22.97
Antipyrine 14 −0.10 0.34 0.38 1.45 (B) 0.0000 188.23 54.55 162.70 416.10 21.62
Atenolol 2 −1.42 −0.34 0.16 9.6 (B) 0.9937 266.34 74.25 236.60 613.00 29.43
Benzene 27 0.37 1.66 2.13 N 0 78.11 26.25 89.40 207.20 10.40
Bromperidol 42 1.38 2.06 4.45 8.65 (B) 0.9468 420.32 103.80 307.50 811.80 41.15
Caffeine 16 −0.06 0.26 −0.07 0.6 (B); 14 (A) 0.0000 194.19 50.38 133.30 364.50 19.97
Carbamazepine 15 −0.07 1.21 2.45 N 0 236.27 69.68 186.50 513.40 27.62
Carbamazepine epoxide 8 −0.34 0.84 n.a. N 0 252.30 n.a. 186.50 n.a. n.a.
Cimetidine 1 −1.42 0.28 0.41 6.8 (B) 0.2008 252.34 70.70 198.20 526.00 28.03
Clobazam 25 0.35 1.45 2.12 N 0 300.74 79.86 225.20 606.50 31.66
Clonidine 22 0.11 0.92 1.59 8.05 (B) 0.8171 230.10 57.28 153.10 409.20 22.70
Codeine 32 0.55 1.28 1.14 8.21 (B) 0.8659 299.37 82.85 222.60 620.80 32.84
Chlorpromazine 38 1.06 2.43 5.35 9.3 (B) 0.9876 318.87 92.75 262.90 686.90 36.67
Desipramine 39 1.20 1.79 4.90 10.44 0.9991 266.39 84.16 254.20 639.30 33.36
Diazepam 31 0.52 1.65 2.80 3.3 (B) 0.0001 284.74 80.91 225.80 588.60 37.07
Ethanol 12 −0.16 0.02 −0.31 15.9 (A) 0.0000 46.07 12.84 59.00 128.40 5.09
Flunitrazepam 20 0.06 1.52 2.06 1.8 (B) 0.0000 313.29 81.84 224.80 605.30 32.44
Fluphenazine 44 1.51 1.99 4.36 3.9 (B); 8.1 (B) 0.8340 437.52 114.30 343.80 885.90 45.31
Haloperidol 41 1.34 2.01 3.36 8.3 (B) 0.8882 375.87 101.01 303.20 797.80 40.04
Hexobarbital 21 0.10 1.36 1.49 8.2 (A) −0.1368 236.27 60.38 192.80 501.80 23.93
Hydroxyzine 29 0.39 1.74 2.36 2.1 (B); 7.1 (B) 0.3339 374.91 105.91 317.10 833.70 41.98
Ibuprofen 11 −0.18 1.19 3.50 5.2 (A) −0.9937 206.29 60.77 200.30 497.60 24.09
Imipramine 37 1.06 2.49 4.80 9.5 (B) 0.9921 280.42 88.92 269.20 677.50 35.25
Indomethacine 3 −1.26 1.20 4.27 4.5 (A) −0.9987 357.80 94.59 269.50 707.60 37.49
Mianserin 36 0.99 2.20 4.26 7.1 (B) 0.3339 264.37 82.88 223.60 605.90 32.85
Midazolam 26 0.36 1.70 4.33 6.2 (B) 0.0594 325.78 89.65 239.80 625.00 35.54
Oxazepam 33 0.61 1.43 2.24 1.7 (B); 11.6 (A) −0.0001 286.72 76.43 201.80 548.80 30.30
Pentobarbital 23 0.12 1.66 2.07 8 (A) −0.2008 226.28 57.89 209.10 507.30 22.95
Phenytoin 17 −0.04 1.54 2.47 8.3 (A) −0.1118 252.27 69.58 200.50 531.30 27.58
Promazine 40 1.23 2.24 4.55 9.36 (B) 0.9892 284.43 87.85 250.90 649.70 24.82
1-Propanol 13 −0.16 0.19 0.25 16.1 (A) 0.0000 60.10 17.48 75.50 168.20 6.93
Propranolol 34 0.64 1.62 3.56 9.45 (B) 0.9912 259.36 78.98 237.10 606.10 31.31
Pyrilamine 30 0.50 1.67 3.27 4.02 (B); 8.92 (B) 0.9711 285.39 87.44 262.10 677.30 34.66
Ranitidine 4 −1.23 0.11 0.27 2.3 (B); 8.2 (B) 0.8632 314.41 85.64 265.40 687.50 33.95
Salicylic acid 5 −1.10 0.55 2.26 2.97 (A); 13.4 (A) −1.0000 138.12 35.06 100.30 284.40 13.90
Theophylline 10 −0.29 0.22 −0.02 3.5 (B); 8.6 (A) −0.0592 180.17 43.14 122.90 352.40 17.10
Thioridazine 24 0.24 2.48 5.90 9.5 (B) 0.9921 370.58 112.80 299.50 829.10 44.71
Toluene 28 0.37 1.86 2.73 N 0 92.14 31.07 105.70 244.90 12.32
Trifluoperazine 43 1.44 2.55 5.03 8.1 (B) 0.8337 407.50 108.15 328.70 828.80 42.87
Verapamila 6 −0.70 1.91 3.79 8.92 (B) 0.9707 454.61 131.86 429.30 1063.90 52.27

logP, logarithm of the partition coefficient in then-octanol/water system of the neutral form of compounds studied;α, total molar charge; MR, molar refractivity; MV, molar volume; Pr, parachor; MW, molecular
weight; n.a., non-available data; (A) pKan value for an acidic and (B) for a basic group. (N) Neutral compound or at least non-ionized(α = 0) at pH 7.4.

a Verapamil is an inhibitor ofp-glycoprotein.
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(Janssen Pharmaceutica, Beerse, Belgium). Other com-
pounds were kindly donated from several pharmaceutical
companies: indomethacine (Llorens, Barcelona, Spain),
testosterone (Schering, Madrid, Spain), progesterona (SEID,
Barcelona, Spain), propranolol (ICI pharma, Barcelona,
Spain), naproxen (Syntex Latino, Madrid, Spain), pentobar-
bital (B. Braun Medical, Barcelona, Spain), and phenytoin
(Laboratorios Rubió, Barcelona, Spain). The following
compounds were obtained from pharmaceuticals: alprazo-
lam (Trankimazin®, Pharmacia Spain, Barcelona, Spain),
acyclovir (Zovirax®, Glaxo-Wellcome, Madrid, Spain),
clobazam, and chlorpromazine (Noiafren®, Largactil®

Aventis Pharma, Madrid, Spain); flunitrazepam, and mi-
dazolam (Rohipnol®, Dormicum® Roche Farma, Madrid,
Spain), ibuprofen (Nurofen®, Boots Healthcare Iberia,
Madrid Spain), mianserin (Lantanon®, Organon Española,
Barcelona, Spain), oxazepam (Adumbran®, Boerhinger In-
gelheim España, Barcelona, Spain), verapamil (Manidon®,
Laboratorios Knoll, Madrid, Spain).

Stock standard solutions of compounds were prepared by
dissolving 10 mg of compound in 10 ml of mobile phase,
methanol or acetonitrile. Working solutions were prepared
by dilution of the stock standard solutions using the mobile
phase. Solutions were stored at 4◦C.

Barnstead E-pure deionized water (Sybron, Boston, MA,
USA) was used throughout. The mobile phase and the solu-
tions injected into the chromatograph were vacuum-filtered
through 0.45�m Nylon membranes (Micron Separations,
Westboro, MA, USA).

2.3. Data sources, software, and data processing

A total of 44 values of logarithm of blood brain distribu-
tion, log BB, have been collected from a number of sources
[5,6,8,10,11,13]including directly measured and indirectly
determined values, they are presented inTable 1. These val-
ues were the brain/blood concentration ratios (BB) obtained
in the rat at steady state. The values of log BB are ranged
between−1.5 and 1.5. A basic assumption of the study was
that BBB permeation was via purely passive diffusion.

Structural parameters (molar refractivity (MR), molar
volume, parachor (Pr), and polarizability) were calculated
using the ACD/ChemSketch software (ACD labs demo
version). The logarithm of octanol–water partition coeffi-
cients (logP) and acidity constants (pKa) were taken from
references[39–41].

Microsoft Excel (Microsoft Corporation, v. 2000), Stat-
graphics (Statistical Graphics Cor. V. 2.1), and Matlab (The
Mathworks v 4.2c.1) were used to perform the statistical
analysis of the regressions. The Unscrambler Version 7.6 by
CAMO was used to perform multivariate analysis.

2.4. BMC data

The chromatographic data of the compounds listed in
Table 1were obtained in our laboratory using a micellar so-

lution of 0.04M Brij35 at pH 7.4 as mobile phase and a C18
Kromasil column as stationary phase. All retention factor
values were averages of at least triplicate determinations.
The retention factors were calculated using acetanilide as
external standard for hold-up time estimations[42].

3. Results and discussion

3.1. Brain–blood distribution coefficients-retention
relationships

The compounds studied are structurally diverse drugs with
different pharmacodynamic and pharmacokinetic properties
and varying degrees of ionization at pH 7.4, resulting in
either positive or negative charge.

Table 1shows the BMC retention factors measured us-
ing 0.04 M Brij35 pH 7.4 micellar mobile phases for the
compounds used in this study together with their litera-
ture “in vivo” values of brain/blood concentration ratio in
rats [5,6,8,10,11,13]. In the same table, dissociation con-
stants and some molecular descriptors of compounds are
shown. The molecular descriptors used were the logarithm
of octanol–water partition coefficients (logP), molecular
weight, molar refractivity (MR), molar volume, parachor
(Pr), polarizability, and molar total charge (α). Theα values
were calculated as in reference[29]:

α =
n∑

j=0

ajδj (1)

whereaj is the value with its sign of the net charge of the
considered specie (i.e.+1, −1, 0, +2) and δj the molar
fraction of the considered specie at the desired pH value.

In order to study the importance of variables in the con-
struction of a regression model for predicting log BB, a par-
tial least squares analysis (PLS) was performed. The log BB
values were used to construct they-block and the descrip-
tor variables logkBMC, molecular weight, molar refractiv-
ity, molar volume, parachor, polarizability, and molar total
charge (α), were used to construct theX-block. Descriptor
variables (X-block) and response variable (y-block) were
autoscaled before the PLS.

Four latent variables (LVs) account for the 75.5% of the
total variance of the original log BB data. The loading plot
corresponding to the first two latent variables (Fig. 1A)
indicates that there is a high correlation between the steric
descriptors molecular weight, molar volume, molar refrac-
tivity, parachor, and polarizability and low correlation is
observed with log BB values. On the other hand a direct
correlation between log BB, logkBMC, andα is observed.

The PLS-model regression coefficients together their un-
certainty limits were obtained for LV 4 (Fig. 1B). As can
be observed the regression coefficients of some molecu-
lar descriptors were not statistically significant (MW, MV,
MR, and polarizability). Non-significant variables were
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Fig. 1. PLS results. (A) Loading plot (B) regression coefficients for LV
4. See text for details.

eliminated step by step, re-analyzing each time the PLS
model. Finally a PLS model was obtained by using the two
significant original variables, logkBMC andα.

Thioridazine and verapamil showed high residual vari-
ance and leverage values, therefore they were considered
as outliers. These compounds have been omitted in the
development of other QSAR models[8,12,13,25]. Exclud-
ing these compounds, the model using one latent variable
accounts for 73.7 and 70.3% of variance in log BB in cal-
ibration and cross-validation (Venetian blinds, random),
respectively.

A multiple linear regression (MLR) analysis using
non-scaled data was also performed using the selected vari-
ables by the PLS approach. The equation of the fitted MLR
model was:

log BB= (−0.84± 0.12) + (0.76± 0.08)logkBMC

+ (0.26± 0.11)α (2)

r2 = 0.75; S.E. = 0.39; F = 60; N = 42; P < 0.0001

The model explains 75% of variance in the data; this vari-
ability can be considered adequate taking into account the
inherent difficulty in the BB estimations. In addition the un-
certainty of experimental log BB values is unknown.

Ther-squared statistic and standard error of estimates val-
ues are similar to those reported in literature (seeTable 2).
All the regression coefficients and the model were statisti-
cally significant at the 99% of confidence level,(P < 0.01).
The residual plot of the model showed a random distribution
of the residuals (seeFig. 3A) with an average value practi-
cally equal to zero, which from a qualitative point of view
suggests the adequacy of the model.

The analysis of the coefficients of the proposed model
implies that the blood brain barrier favors the passage of
neutral or cationic and hydrophobic compounds. The model
derived is consistent with other reported models that indicate
that the brain–blood distribution coefficients depend directly
on the hydrophobic character of compounds which is directly
related with retention in BMC. Additionally the retention
in BMC depends on the electronic and steric properties of
compounds which also have importance in the brain–blood
drug distribution.

The inclusion of the total molar charge is of particular im-
portance for compounds containing acidic groups. For these
compounds large discrepancies, between the predicted val-
ues according to their hydrophobic character and the exper-
imental ones, have been observed. In fact, several indicator
variables have been introduced in QSAR models in order to
correct them[13]. When molar total charge was removed
from the model (Eq. (1)), a significant linear model was ob-
tained:

log BB = (−0.87± 0.12) + (0.84± 0.08)logkBMC (3)

r2 = 0.74; S.E. = 0.39; F = 109.6; N = 41; P < 0.0001

only indomethacine(α = −1) was detected as outlier. This
model is simpler thanEq. (2) and presents similar statisti-
cal parameters. More log BB experimental data for anionic
compounds would be necessary in order to confirmEq. (1)
or Eq. (2), although in both cases adequate results are ob-
tained.

3.2. Potential of the model based on biopartioning micellar
chromatography retention for predicting brain penetration

The model developed can be used for qualitative and quan-
titative purposes. From a qualitative point of view, drugs can
be classifying according to their log BB values in poor brain
penetrators (BBB−) and easy brain penetrators (BBB+).
Different criteria have been used in literature bear in mind
that the cut-off is arbitrary and would have to be defined
with a specific pharmacology. Indeed the cut-off value will
depend on which are more damaging to the classification,
false positives or false negatives[12]. 82% of the BBB−
compounds and 100% of BBB+ compounds were correctly
classified with a cut-off of 0. This criteria implies that drugs
with log BB > 0 accumulate preferably in the brain (>50%).
If more restrictive cutoffs are chosen to define BBB− com-
pounds(log BB < −0.5) and BBB+ compounds(log BB >
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Table 2
Statistical characteristics of the some of literature QSAR models

Model, ref. Descriptor variables Number of descriptor
variables

log BB range
studied

N r2 r2
CV S.E.

Platts et al.[13] Solvatochromic parameters 6 −1.82 to 1.38 148 0.74 0.715a 0.34
Luco [8] Computacional 18 −2.15 to 1.04 58 0.85 0.75a 0.32
Ooms et al.[12] Computacional 31 −1.42 to 1.23 79 0.76 0.65b n.a.
Rose et al.[15] Computacional 3 −2.15 to 1.44 102 0.66 0.62b 0.45
Salminen et al.[25] Retention in IAM chromatography

and other descriptors
3 −0.7 to 1.3 21 0.85 n.a. 0.27

This work Retention in BMC and total molar
charge

2 −1.42 to 1.51 42 0.75 0.70a 0.39

Retention in BMC 1 −1.42 to 1.51 41 0.74 0.69a 0.39

a Venetian blinds cross-validation.
b Leave-one-out cross-validation.

0.5) [12], the model assign correctly the 71% of BBB−
compounds and 80% of the BBB+ compounds.

The quantitative use of the models imply the evalua-
tion of their predictive ability. For this purpose, the fit
error (the root-mean-squared error of calibration, RM-
SEC) and the prediction error based on random Vene-
tian blinds cross-validation (root-mean-squared error of
cross-validation, RMSECV) were obtained: RMSEC=
0.3792; RMSECV = 0.4208, Eq. (2) and RMSEC =
0.3784; RMSECV= 0.4138,Eq. (3). As can be observed,
the RMSEC and RMSECV values were similar in both
cases, which suggest the robustness of the models is rea-
sonably adequate.

Fig. 2 shows the predicted versus experimental (fitted
and cross-validated) values of brain/blood distribution coef-
ficients, obtained fromEqs. (2) to (3)(Fig. 2A and B). As
can be observed, the ability of the proposed models to de-
scribe and predict brain penetration is adequate. The QSAR
models obtained using the logP values instead of logkBMC,
showed the same trend described, but worse statistical pa-
rameter values were obtained.

log BB= (−0.55± 0.14) + (0.26± 0.05) logP

+ (0.47± 0.14)α (4)

r2 = 0.59; S.E. = 0.51; F = 28; N = 41; P < 0.0001

log BB = (−0.60± 0.12) + (0.35± 0.04) logP (5)

r2 = 0.62; S.E. = 0.47; F = 61; N = 40; P < 0.0001

Using the retention data of a reduced number of com-
pounds, selected in order to cover a wide log BB range
(−1.42 to 1.44), a similar model toEq. (3) was obtained.
The selected anionic(n = 3), cationic (n = 4), and neu-
tral (n = 3) compounds were: atenolol, salicylic acid,
acetylsalicylic, ibuprofen, carbamazepine, alprazolam, mi-
dazolam, mianserine, promazine, and trifluoperazine. These
compounds showed residual values lower than 0.5 in many
QSAR models proposed in literature (seeTable 3).

log BB = (−1.3 ± 0.12) + (1.04± 0.08) logkBMC (6)
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Fig. 2. Validation plots: predicted log BB vs. actual log BB values obtained
using (A) Eq. (2) and (B) Eq. (3). (�) Fitted and (+) cross-validated
data are shown.
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Table 3
Experimental and predicted log BB values

Compound
number

Name Experimental
log BB values

Predicted log BB values

Eq. (2) Eq. (3) Ref. [13] Ref. [8] Ref. [12] Ref. [15]

1 Cimetidine −1.42 −0.58 −0.64 −0.77 −1.19 −1.01
2 Atenolol −1.42 −0.74 −1.15 −0.93 −1.36
3 Indomethacin −1.26 −0.34 0.14 −0.92 −1.03 −1.15 −0.77
4 Ranitidine −1.23 −0.46 −0.78 −0.02 −0.61 −0.85
5 Salicylic acid −1.10 −0.82 −0.41 −0.87 −1.21 −0.66 −0.86
6 Verapamil −0.70 0.90 0.73 −1.11 −0.96 −0.78
7 Acetylsalicylic acid −0.50 −0.80 −0.39 −0.75 −1.18 −0.52 −0.59
8 Carbamazepine epoxide −0.34 −0.24 −0.16
9 Acetaminophen −0.31 −0.38 −0.32 −1.22

10 Theophylline −0.29 −0.71 −0.68 −0.91 −0.51 −0.96 −0.32
11 Ibuprofen −0.18 −0.34 0.13 −0.23 −0.56 0.22 −0.14
12 Ethanol −0.16 −0.84 −0.85 −0.41 −0.23
13 1-Propanol −0.16 −0.72 −0.71 −0.26 −0.06 −0.14
14 Antipyrine −0.10 −0.61 −0.58 −0.24 0.47 0.50 0.34
15 Carbamazepine −0.07 0.03 0.14 0.31 0.17
16 Caffeine −0.06 −0.67 −0.65 −0.39 −0.22 −0.87 0.06
17 Phenytoin −0.04 0.24 0.42 −0.55
18 Amobarbital 0.04 0.20 0.46 0.05
19 Alprazolam 0.04 0.23 0.34 −0.03 0.33 −0.38 0.64
20 Flunitrazepam 0.06 0.26 0.41 −0.09
21 Hexobarbital 0.1 0.09 0.27 0.10
22 Clonidine 0.11 0.12 −0.10 −0.42 0.46 −0.44
23 Pentobarbital 0.12 0.29 0.52 0.12 −0.19 −0.54 −0.76
24 Thioridazine 0.24 1.33 1.21 1.20 1.06 0.78 0.89
25 Clobazan 0.35 0.21 0.35 0.49
26 Midazolam 0.36 0.42 0.56 0.49 0.40 0.41 0.29
27 Benzene 0.37 0.37 0.52 0.33 0.55 0.57
28 Toluene 0.37 0.51 0.69 0.48 0.69 0.51
29 Hydroxyzine 0.39 0.54 0.59 0.45 0.13 −0.88 0.02
30 Pyrilamine 0.50 0.73 0.53
31 Diazepam 0.52 0.36 0.51 0.69
32 Codeine 0.55 0.40 0.20 −0.22 0.27 0.54 −0.29
33 Oxazepam 0.61 0.19 0.33 0.58 −0.48 −0.66 −0.53
34 Propranolol 0.64 0.70 0.49 0.17
35 Amitriptyline 0.90 1.25 1.12 0.74 0.84
36 Mianserin 0.99 0.88 0.98 0.69 0.91
37 Imipramine 1.06 1.34 1.22 0.69 0.92 0.83
38 Chlorpromazin 1.06 1.30 1.17 0.38 0.71 0.42 0.88
39 Desipramine 1.2 0.83 0.63 0.71 0.43 0.42 0.44
40 Promazine 1.23 1.15 1.01 0.84 0.83 0.65 0.97
41 Haloperidol 1.34 0.95 0.82 0.80 −0.27
42 Bromperidol 1.38 1.01 0.86 0.90
43 Trifluoperazine 1.44 1.33 1.27 1.09 0.46 0.26
44 Fluphenazine 1.51 0.91 0.80 0.45

r2 = 0.96; S.E. = 0.20; n = 10; F = 187; P < 0.0001

This calibration set can be used to check the stability of the
proposed model under intermediate precision conditions and
to check the reproducibility for interlaboratory comparisons.

3.3. Comparison with other QSAR and in vitro approaches

As it has been indicated in the introduction section differ-
ent in vitro, mathematical and chromatographic approaches
have been developed to estimate brain–blood distribution
coefficients.Table 2summarizes the characteristics of some
log BB models reported in literature together with the char-

acteristics of the models proposed in the present paper. As
can be observed, in computational approaches the num-
ber of descriptor variables and compounds used to perform
the model obviously is higher than in the experimental ap-
proaches. The range of log BB values studied is very similar
in all approaches, except in the model reported by Salminen
et al. [25] because they considered as outliers compounds
such as cimetidine, ranitidine, indomethacine and salicylic
acid which show low log BB values. The R-squared statistic
in cross-validation values (R2

CV) and the standard error of
estimates are similar in all cases.

In Table 3, the predicted values for the compounds used
in this study obtained usingEqs. (2) and (3)and the re-
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Fig. 3. Residual plots for compounds studied in this work obtained for different QSAR models. (A) BMC modelEq. (2), (B) BMC modelEq. (3), (C)
model from reference[13], (D) model from reference[8], (E) model from reference[12], (F) model from reference[15]. Compounds have been ordered
according to their experimental log BB values (numbers inTable 1).

ported in literature using different QSAR models are shown.
The mean absolute errors for the different models were
0.296 (n = 42), 0.316 (n = 41), 0.348 (n = 37), 0.427
(n = 25), 0.459(n = 25), and 0.381(n = 28) for predic-
tions obtained usingEqs. (2) and (3), and reported in refs.
[13,8,12,15], respectively. As can be observed, the proposed
BMC models show better or at least comparable predictive
ability than other reported QSAR models.Fig. 3 shows the
residual plots obtained for the compounds studied in this
work.

Endothelial cell lines (BBMEC) from bovine brain mi-
crovessels have been developed as an in vitro model for
transport studies across the blood brain barrier. The rela-
tionship between in vitro permeability in BBMEC lines
and BMC retention was evaluated. For this purpose, the
permeability data (PC× 104 cm/s) of a set of eight drugs
(acyclovir, caffeine, antipyrine, propranolol, estrone, pro-
gesterone, testosterone, and haloperidol) reported by Lom-
bardo et al.[10] using BBMEC lines were correlated with
the retention factors in BMC using a 0.04M Brij35 mobile
phase. A linear relationship was obtained (Fig. 4) and the
fitted equation to the data was:

PC× 104 = (34± 5) + (32± 3)logkBMC (7)

r2 = 0.94; S.E. = 8.7; n = 7; F = 85.5

where the numbers in parenthesis are the confidence lim-
its at a 95% probability level. TheP-value obtained for the
model was lower than 0.05, which indicates that the relation-

ship between PC and the logkBMC values was statistically
significant at the 95% confidence level. From the results it
can be concluded that the two approaches, BMC, and BB-
MEC, are comparable and useful in the estimating of drug
blood–brain penetration.

-1.00 0.00 1.00 2.00 3.00
logk(BMC)

0.00

20.00

40.00

60.00

80.00

100.00

P
C

x1
04

Fig. 4. Relationship between the logarithm of retention factors obtained
in BMC using 0.04 M Brij35 as mobile phase for a heterogeneous set of
drugs and the PC values obtained in BBMEC.
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3.4. Advantages and limitations of the BMC models

The BMC technique is a promising tool for ranking BBB
drug penetration, and it offers the practical advantages of be-
ing easily automated, time-saving and highly reproducible.
However, BMC also has the limitation that it may fail
when other processes such as carrier-mediated transport or
metabolism limit brain uptake; whereas if the rate-limiting
step for permeation across the BBB is the partitioning of
the drug into the brain endothelial cell membrane, BMC
will be successful.

4. Conclusions

The results presented here indicate that the retention
of compounds in biopartitioning micellar chromatography,
BMC, is capable of describing and predicting in vitro the
blood–brain barrier penetration. Therefore, it can be used to
identify the blood brain barrier penetration ability of drugs
at an early stage of the drug discovery process.

The comparison with other QSAR models proposed re-
veals that the BMC models are better or at least comparable
from a statistical point of view. In addition, due to the high
number of parameters used to develop the QSAR models,
the number of experimental data needed to obtain a statis-
tical validated model is also high, mainly when multiple
linear regression is used. The use of as few descriptors as
possible has been recommended[43]. The BMC method-
ology is less expensive than cell culture models or in vivo
models and minimum experimentation is required.
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