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Abstract

The blood—brain barrier (BBB) is considered to be the main barrier to drug transport into the central nervous system (CNS). The BBB
restricts the passive diffusion of many drugs from blood to brain. The ease with which any particular drug diffuses across the BBB is deter-
mined largely by the molecular features of drugs, and it is therefore possible to predict the BBB permeability of a drug from its molecular
structure. Biopartitioning micellar chromatography (BMC), a mode of micellar liquid chromatography that uses micellar mobile phases of
Brij35 in adequate experimental conditions, can be useful in mimicking the drug partitioning process into biological systems. Retention in
BMC depends on the hydrophobicity, electronic and steric properties of drugs. In this paper, the usefulness of BMC for predicting the BBB
penetration ability of drugs expressed as the brain/blood distribution coefficient (BB) is demonstrated. A multiple linear regression (MLR)
model that relates the BB distribution coefficients data with BMC retention data and total molar charge is proposed. The model is obtained
using 44 heterogeneous drugs including, neutral, anionic, and cationic compounds. A comparison with other reported methodologies to predict
the BBB permeability is also presented.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction between the epithelial cells of the chord plexus. This tight
junction inhibits the passage of hydrophilic compounds ex-
The development of combinatorial chemistry has made cluding molecules with a diameter larger than 20 A. Thus,
possible to synthesize hundreds of potentially active drugs. the hydrophobicity of compounds has long been considered
The need to find a tool for estimating the biopharmaceutical to determine the rate at which they are capable of entering
parameters of new compounds supports the postulation ofthe brain via the lipid-mediated pathwgl].
predictive models as a complement to conventional assays Although some drugs use transporters, most drugs enter
that can reduce the use of animal experimentation, the costhe brain by passive diffusion through the endothelial cells,
and can save time. which depends on their hydrophobicity, degree of ionization,
To directly affect central nervous system cells a drug must molecular weight (MW), relative brain tissue, and plasma
appear in the fluid environment of these cells. The distri- bindings. The blood brain barrier can be the major imped-
bution of many drugs to brain is quite different from that iment for the treatment of central nervous system diseases,
to other organs. The major factor creating this difference for many drugs are unable to reach this organ at therapeutic
is the blood-brain barrier (BBB). The blood-brain barrier concentration§2,3]. Prediction of passage across the blood
is formed by high resistance tight junctions between adja- prain barrier is of great importance for centrally acting drugs
cent endothelial cells in the cerebral micro-vessel walls and or for peripherally acting drugs that should be devoid of
CNS side-effects. Convenient and reliable methods for pre-
* Corresponding author. Tek:34-96-3544899; faxi-34-96-3544953. dicting distribution of these agents between blood and brain
E-mail addressmaria.j.medina@uv.es (M.J. Medina-Handez). are highly desirable.
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Several techniques have been utilized to quantify the tionary phases permits drug biopartitioning simulation. This
BBB permeability that can be classified as in vivo and in technique, that we have called biopartitioning micellar chro-
vitro techniqueg4]. In vivo methods include brain homog- matography (BMC), has demonstrated to be useful in de-
enization, cerebrospinal fluid (CSF) sampling, voltamme- scribing the biological behavior of different kinds of drugs
try, autoradiography, nuclear magnetic resonance (NMR) [27-33]and to predict human oral drug absorption, skin per-
spectroscopy, positron emission tomography (PET), intrac- meability, and ocular tissue permeability of dr§4—38]
erebral microdialysis, and brain uptake index (BUI) deter- The success of BMC in constructing these models could be
mination. In most of them chromatographic techniques are attributed to the fact that the characteristics of the BMC sys-
used as adjunct methods. In general, in vivo methods aretems show similarities with the biological barriers and ex-
complicated, time-consuming and require the synthesis of tracellular fluids. Therefore, the retention of a drug in BMC,
test compounds in radiolabeled fofth5,6]. which depends on its hydrophobic, electronic, and steric

To circumvent the problems associated with screening properties, reflects adequately the extension of the bioparti-
experimental compounds in animals, a number of in vitro tioning process.
models for predicting brain penetration have recently ap- In this paper, the usefulness and limitations of bioparti-
peared which include computational methods that correlatetioning micellar chromatography for predicting drug pene-
physicochemical parameters or molecular descriptors with tration across the blood-brain barrier are studied.
brain—blood distributiofi7—15]. Cell culture models such as
bovine brain micro-vessel endothelial cell (BMECS) lines
[16,17] have also been used for transport studies. 2. Experimental

The hydrophobicity of a solute as measured by its parti-
tion behavior between octanol and water (Rghas been 2.1. Instrumental and measurement
widely used to model transmembrane permeability and the
brain—blood equilibrium distribution ratio. This kind of A Hewlett-Packard 1100 chromatograph with an isocratic
correlation was graphically represented by Pardriddd. pump, an UV-Vis detector and a HP Vectra computer, were
However, the octanol/water partition coefficient is unfortu- used (Palo Alto, CA, USA). Data acquisition and processing
nately an unreliable predictor for drug penetration across were performed on a HP Vectra XM computer (Amsterdam,

cellular barriers. The observations that P@lone is un- The Netherlands) equipped with HP-Chemstation software
able to account for differences between drugs’ brain—blood (A0402, 1996). The solutions were injected into the chro-
concentrations ratios was demonstrated by Young ¢5Rl. matograph through a Rheodyne valve (Cotati, CA, USA),

A better correlation was found by Abraham and Chadka with a 20wl loop. Kromasil octadecyl-silane i columns
[19] using the logarithm of the cyclohexane—water parti- (5pum, 150 mmx 4.6 mm and 50 mnx 4.6 mm i.d.) (Schar-
tion coefficient (log°cyh). Upon reanalyzing the data of lab, Barcelona, Spain) were used. The mobile phase flow rate
Young et al., Van de Waterbeemd and Kafia9] obtained was 1 mimirr?. All the assays were carried out at 36
a two-parameter regression equation describing the brain
uptake in terms of the calculated molar volume (VM) of the 2.2. Reagents and standards
molecule and a descriptor derived from the measurements
of the alkane—water partition coefficient. Micellar mobile phases of 0.04 M polyoxyethylene(23)
Levin [21] and Conford et al[22] found good correla-  lauryl ether (Brij35, Acros Chimica, Geel, Belgium, critical
tions when they assumed that permeability is a function of micellar concentration, CMC,x110~* M) were prepared by
the diffusion coefficient and that variability in diffusion co- dissolving Brij35 in 0.05 M phosphate buffer at pH 7.4. The
efficients of small molecules approximates the square root phosphate buffer solutions were prepared with disodium hy-
of the molecular weight. drogen phosphate and sodium di-hydrogen phosphate (an-
Chromatography is a powerful technique for measuring alytical reagent, Panreac, Barcelona, Spain). In order to
of the physicochemical parameters of drugs. Different chro- reproduce the osmotic pressure of biological fluids, NaCl
matographic strategies have been proposed in order to mode(9.20 g/l, Panreac) was added to the micellar mobile phase.
drug-membrane transport. For instance, phospholipids have The compounds used in this study were obtained from
been covalently immobilized to silica propyl amide parti- different sources: ethanol, benzene, 1-propanol, and toluene
cles[23] and liposomes have been immobilized in capillary (Scharlab, Barcelona, Spain); amobarbital, atenolol, car-
continuous beds with covalently linked; @r Cg alkyl lig- bamazepine epoxide, codeine, desipramine, haloperidol,
ands[24]. The relationship between immobilized artificial hexobarbital, promazine, pyrilamine, thioridazine, and tri-
membrane chromatographic retention and the brain penetrafluoperazine (Sigma, St. Louis, MO USA); acetaminophen,
tion of drugs has been reported by Salminen ef2d] and acetylsalicic acid, amitriptyline, caffeine, carbamazepine,
Reichel and Begley26]. cimetidine, clonidine, diazepam, fluphenazine, hydroxizine,
Our research group has demonstrated that in adequate eximipramine, ranitidine, theophylline, and estrone (Guinama,
perimental conditions the use of polyoxyethylene(23)lauryl Valencia, Spain); salicylic acid, antipyrine (Panreac, Mont-
ether (Brij35) micellar mobile phases andsCeversed sta- plet & Esteban S.A., Barcelona, Spain), bromperidol



Table 1

Logarithm of the brain—blood distribution coefficient (log BB), logarithm of the retention factor in BMCkél@g) and physico-chemical and structural descriptor values tested for log BB modeling

Compounds Compound logBB logkemc logP PKa, o MW MR (cm?) MV (cm®) Pr (cn®) Polarizability
number (x10%% (cn)
Acetaminophen 9 -0.31 0.66 0.46 9.38 (A) —0.0104 151.16 42.40 120.90 326.00 16.81
Acetylsalicylic acid 7 —0.50 0.57 1.19 3.5 (A) —0.9999 180.16 44.52 139.50 370.90 17.65
Alprazolam 19 0.04 1.44 2.12 6.2 (B) 0.0594 308.77 88.22 225.50 606.20 34.47
Amitriptyline 35 0.90 2.37 5.04 9.42 (B) 0.9905 277.41 91.52 257.70 675.10 36.28
Amobarbital 18 0.04 1.58 2.07 7.8 (A) —0.2847 226.27 57.95 211.40 507.30 22.97
Antipyrine 14 -0.10 0.34 0.38 1.45 (B) 0.0000 188.23 54.55 162.70 416.10 21.62
Atenolol 2 —1.42 -0.34 0.16 9.6 (B) 0.9937 266.34 74.25 236.60 613.00 29.43
Benzene 27 0.37 1.66 2.13 N 0 78.11 26.25 89.40 207.20 10.40
Bromperidol 42 1.38 2.06 4.45 8.65 (B) 0.9468 420.32 103.80 307.50 811.80 41.15
Caffeine 16 —0.06 0.26 —0.07 0.6 (B); 14 (A) 0.0000 194.19 50.38 133.30 364.50 19.97
Carbamazepine 15 —0.07 1.21 2.45 N 0 236.27 69.68 186.50 513.40 27.62
Carbamazepine epoxide 8 -0.34 0.84 n.a. N 0 252.30 n.a. 186.50 n.a. n.a.
Cimetidine 1 —-1.42 0.28 0.41 6.8 (B) 0.2008 252.34 70.70 198.20 526.00 28.03
Clobazam 25 0.35 1.45 2.12 N 0 300.74 79.86 225.20 606.50 31.66
Clonidine 22 0.11 0.92 1.59 8.05 (B) 0.8171 230.10 57.28 153.10 409.20 22.70
Codeine 32 0.55 1.28 1.14 8.21 (B) 0.8659 299.37 82.85 222.60 620.80 32.84
Chlorpromazine 38 1.06 2.43 5.35 9.3 (B) 0.9876 318.87 92.75 262.90 686.90 36.67
Desipramine 39 1.20 1.79 4.90 10.44 0.9991 266.39 84.16 254.20 639.30 33.36
Diazepam 31 0.52 1.65 2.80 3.3 (B) 0.0001 284.74 80.91 225.80 588.60 37.07
Ethanol 12 —0.16 0.02 —-0.31 15.9 (A) 0.0000 46.07 12.84 59.00 128.40 5.09
Flunitrazepam 20 0.06 1.52 2.06 1.8 (B) 0.0000 313.29 81.84 224.80 605.30 32.44
Fluphenazine 44 151 1.99 4.36 3.9 (B); 8.1 (B) 0.8340 437.52 114.30 343.80 885.90 45.31
Haloperidol 41 1.34 2.01 3.36 8.3 (B) 0.8882 375.87 101.01 303.20 797.80 40.04
Hexobarbital 21 0.10 1.36 1.49 8.2 (A) —0.1368 236.27 60.38 192.80 501.80 23.93
Hydroxyzine 29 0.39 1.74 2.36 2.1 (B); 7.1 (B) 0.3339 374.91 105.91 317.10 833.70 41.98
Ibuprofen 11 -0.18 1.19 3.50 5.2 (A) —0.9937 206.29 60.77 200.30 497.60 24.09
Imipramine 37 1.06 2.49 4.80 9.5 (B) 0.9921 280.42 88.92 269.20 677.50 35.25
Indomethacine 3 -1.26 1.20 4.27 4.5 (A) —0.9987 357.80 94.59 269.50 707.60 37.49
Mianserin 36 0.99 2.20 4.26 7.1 (B) 0.3339 264.37 82.88 223.60 605.90 32.85
Midazolam 26 0.36 1.70 4.33 6.2 (B) 0.0594 325.78 89.65 239.80 625.00 35.54
Oxazepam 33 0.61 1.43 2.24 1.7 (B); 11.6 (A) —0.0001 286.72 76.43 201.80 548.80 30.30
Pentobarbital 23 0.12 1.66 2.07 8 (A) —0.2008 226.28 57.89 209.10 507.30 22.95
Phenytoin 17 —0.04 1.54 2.47 8.3 (A) —-0.1118 252.27 69.58 200.50 531.30 27.58
Promazine 40 1.23 2.24 4.55 9.36 (B) 0.9892 284.43 87.85 250.90 649.70 24.82
1-Propanol 13 -0.16 0.19 0.25 16.1 (A) 0.0000 60.10 17.48 75.50 168.20 6.93
Propranolol 34 0.64 1.62 3.56 9.45 (B) 0.9912 259.36 78.98 237.10 606.10 31.31
Pyrilamine 30 0.50 1.67 3.27 4.02 (B); 8.92 (B) 0.9711 285.39 87.44 262.10 677.30 34.66
Ranitidine 4 -1.23 0.11 0.27 2.3 (B); 8.2 (B) 0.8632 314.41 85.64 265.40 687.50 33.95
Salicylic acid 5 -1.10 0.55 2.26 2.97 (A); 13.4 (A) —1.0000 138.12 35.06 100.30 284.40 13.90
Theophylline 10 -0.29 0.22 —-0.02 3.5 (B); 8.6 (A) —0.0592 180.17 43.14 122.90 352.40 17.10
Thioridazine 24 0.24 2.48 5.90 9.5 (B) 0.9921 370.58 112.80 299.50 829.10 44.71
Toluene 28 0.37 1.86 2.73 N 0 92.14 31.07 105.70 244.90 12.32
Trifluoperazine 43 1.44 2.55 5.03 8.1 (B) 0.8337 407.50 108.15 328.70 828.80 42.87
Verapamif 6 -0.70 1.91 3.79 8.92 (B) 0.9707 454.61 131.86 429.30 1063.90 52.27

T0Z-€6T (¥002) L08 g 16orewolyd r / °[e 18 uage|iD-1apnasy

logP, logarithm of the partition coefficient in the-octanol/water system of the neutral form of compounds studiedotal molar charge; MR, molar refractivity; MV, molar volume; Pr, parachor; MW, molecular
weight; n.a., non-available data; (AKp, value for an acidic and (B) for a basic group. (N) Neutral compound or at least non-iopized) at pH 7.4.

@ Verapamil is an inhibitor ofp-glycoprotein.
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(Janssen Pharmaceutica, Beerse, Belgium). Other com-ution of 0.04M Brij35 at pH 7.4 as mobile phase andg C
pounds were kindly donated from several pharmaceutical Kromasil column as stationary phase. All retention factor
companies: indomethacine (Llorens, Barcelona, Spain),values were averages of at least triplicate determinations.
testosterone (Schering, Madrid, Spain), progesterona (SEID,The retention factors were calculated using acetanilide as
Barcelona, Spain), propranolol (ICI pharma, Barcelona, external standard for hold-up time estimati¢a2].

Spain), naproxen (Syntex Latino, Madrid, Spain), pentobar-

bital (B. Braun Medical, Barcelona, Spain), and phenytoin

(Laboratorios Rubi6, Barcelona, Spain). The following 3. Results and discussion

compounds were obtained from pharmaceuticals: alprazo-

lam (Trankimaziff, Pharmacia Spain, Barcelona, Spain), 3.1. Brain-blood distribution coefficients-retention
acyclovir (Zovira®, Glaxo-Wellcome, Madrid, Spain), relationships

clobazam, and chlorpromazine (Noiaffen Largacti

Aventis Pharma, Madrid, Spain); flunitrazepam, and mi-  The compounds studied are structurally diverse drugs with
dazolam (Rohipnél, Dormicun® Roche Farma, Madrid, different pharmacodynamic and pharmacokinetic properties
Spain), ibuprofen (Nuroféh Boots Healthcare Iberia, and varying degrees of ionization at pH 7.4, resulting in
Madrid Spain), mianserin (LantanBnOrganon Espafiola,  either positive or negative charge.

Barcelona, Spain), oxazepam (AdumbfaBoerhinger In- Table 1shows the BMC retention factors measured us-
gelheim Espafia, Barcelona, Spain), verapamil (Marfidon ing 0.04 M Brij35 pH 7.4 micellar mobile phases for the
Laboratorios Knoll, Madrid, Spain). compounds used in this study together with their litera-

Stock standard solutions of compounds were prepared byture “in vivo” values of brain/blood concentration ratio in
dissolving 10 mg of compound in 10 ml of mobile phase, rats[5,6,8,10,11,13]In the same table, dissociation con-
methanol or acetonitrile. Working solutions were prepared stants and some molecular descriptors of compounds are
by dilution of the stock standard solutions using the mobile shown. The molecular descriptors used were the logarithm
phase. Solutions were stored &Gl of octanol-water partition coefficients (I8, molecular

Barnstead E-pure deionized water (Sybron, Boston, MA, weight, molar refractivity (MR), molar volume, parachor
USA) was used throughout. The mobile phase and the solu-(Pr), polarizability, and molar total charge)( Theo values
tions injected into the chromatograph were vacuum-filtered were calculated as in referenf29]:
through 0.45.m Nylon membranes (Micron Separations, n
Westboro, MA, USA). o = 20151' (1)

2.3. Data sources, software, and data processing /=0
wherea; is the value with its sign of the net charge of the

A total of 44 values of logarithm of blood brain distribu- considered specie (i.e-1, —1, 0, +2) and§; the molar
tion, log BB, have been collected from a number of sources fraction of the considered specie at the desired pH value.
[5,6,8,10,11,13]ncluding directly measured and indirectly In order to study the importance of variables in the con-
determined values, they are presentedidhle 1 These val- struction of a regression model for predicting log BB, a par-
ues were the brain/blood concentration ratios (BB) obtained tial least squares analysis (PLS) was performed. The log BB
in the rat at steady state. The values of log BB are rangedvalues were used to construct thlock and the descrip-
between-1.5 and 1.5. A basic assumption of the study was tor variables lodgsmc, molecular weight, molar refractiv-
that BBB permeation was via purely passive diffusion. ity, molar volume, parachor, polarizability, and molar total

Structural parameters (molar refractivity (MR), molar charge &), were used to construct th&-block. Descriptor
volume, parachor (Pr), and polarizability) were calculated variables X-block) and response variablg-block) were
using the ACD/ChemSketch software (ACD labs demo autoscaled before the PLS.

version). The logarithm of octanol-water partition coeffi- Four latent variables (LVs) account for the 75.5% of the
cients (logP) and acidity constants k) were taken from total variance of the original log BB data. The loading plot
reference$39-41] corresponding to the first two latent variabldsig( 1A)

Microsoft Excel (Microsoft Corporation, v. 2000), Stat- indicates that there is a high correlation between the steric
graphics (Statistical Graphics Cor. V. 2.1), and Matlab (The descriptors molecular weight, molar volume, molar refrac-
Mathworks v 4.2c.1) were used to perform the statistical tivity, parachor, and polarizability and low correlation is
analysis of the regressions. The Unscrambler Version 7.6 byobserved with log BB values. On the other hand a direct

CAMO was used to perform multivariate analysis. correlation between log BB, Idgwmc, anda is observed.
The PLS-model regression coefficients together their un-
2.4. BMC data certainty limits were obtained for LV 4F{g. 1B). As can

be observed the regression coefficients of some molecu-
The chromatographic data of the compounds listed in lar descriptors were not statistically significant (MW, MV,
Table 1were obtained in our laboratory using a micellar so- MR, and polarizability). Non-significant variables were
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(A) Ther-squared statistic and standard error of estimates val-
N ] logBB ues are similar to those reported in literature (Sable 2.
= logkemo All the regression coefficients and the model were statisti-
0.5 7] cally significant at the 99% of confidence leveP, < 0.01).
o The residual plot of the model showed a random distribution

of the residuals (seEig. 3A) with an average value practi-
cally equal to zero, which from a qualitative point of view
suggests the adequacy of the model.

MR The analysis of the coefficients of the proposed model
] Polarizabity £, 1V implies that the blood brain barrier favors the passage of
-0.5 MW neutral or cationic and hydrophobic compounds. The model
. derived is consistent with other reported models that indicate
that the brain—blood distribution coefficients depend directly
on the hydrophobic character of compounds which is directly
related with retention in BMC. Additionally the retention
Mw in BMC depends on the electronic and steric properties of

compounds which also have importance in the brain—blood
drug distribution.
Polarizability The inclusion of the total molar charge is of particular im-
portance for compounds containing acidic groups. For these
compounds large discrepancies, between the predicted val-
ues according to their hydrophobic character and the exper-
imental ones, have been observed. In fact, several indicator
E variables have been introduced in QSAR models in order to
2] correct them[13]. When molar total charge was removed
1 from the model Eq. (1)), a significant linear model was ob-

tained:

-0.2 0 0.2 0.4 LV

C

N
il

logksuc

|

MV
Pr

, Regression coefficients
(@]

2 4 6 8
X-variables

Fig. 1. PLS results. (A) Loading plot (B) regression coefficients for LV |og BB = (—0.87 4= 0.12) + (0.84 4 0.08)log kgmc 3)
4. See text for details.

r> =0.74, SE. =039 F=1096; N =41, P < 0.0001

eliminated step by step, re-analyzing each time the PLS
model. Finally a PLS model was obtained by using the two Only indomethacinéa = —1) was detected as outlier. This
significant original variables, lokgyc ande. model is simpler tharieg. (2) and presents similar statisti-

Thioridazine and verapamil showed high residual vari- cal parameters. More log BB experimental data for anionic
ance and leverage values, therefore they were considere¢@mpounds would be necessary in order to confiin (1)
as outliers. These compounds have been omitted in theOr EQ. (2) although in both cases adequate results are ob-
development of other QSAR moddB,12,13,25] Exclud-  tained.
ing these compounds, the model using one latent variable
accounts for 73.7 and 70.3% of variance in log BB in cal- 3.2. Potential of the model based on biopartioning micellar
ibration and cross-validation (Venetian blinds, random), chromatography retention for predicting brain penetration
respectively.

A multiple linear regression (MLR) analysis using The model developed can be used for qualitative and quan-
non-scaled data was also performed using the selected varititative purposes. From a qualitative point of view, drugs can
ables by the PLS approach. The equation of the fitted MLR be classifying according to their log BB values in poor brain

model was: penetrators (BBB) and easy brain penetrators (BBR
Different criteria have been used in literature bear in mind
logBB=(—0.84+0.12) + (0.76 & 0.08)log ksmc that the cut-off is arbitrary and would have to be defined
+(0.26+ 0.1« ) with a specific pharmacology. Indeed the cut-off value will
depend on which are more damaging to the classification,
> =075, SE.=0.39, F =60, N =42 P < 0.0001 false positives or false negativgs?]. 82% of the BBB-

compounds and 100% of BBBcompounds were correctly
The model explains 75% of variance in the data; this vari- classified with a cut-off of 0. This criteria implies that drugs
ability can be considered adequate taking into account thewith log BB > 0 accumulate preferably in the brain (>50%).
inherent difficulty in the BB estimations. In addition the un- If more restrictive cutoffs are chosen to define BBBom-
certainty of experimental log BB values is unknown. pounds(log BB < —0.5) and BBB+ compoundsglog BB >
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Table 2
Statistical characteristics of the some of literature QSAR models
Model, ref. Descriptor variables Number of descriptor logBB range N r? r%v S.E.
variables studied
Platts et al[13] Solvatochromic parameters 6 —1.82to 1.38 148 0.74 0.715 0.34
Luco [8] Computacional 18 —2.15to 1.04 58 0.85 0.75 0.32
Ooms et al[12] Computacional 31 —1.42 to 1.23 79 0.76 0.65 n.a.
Rose et al[15] Computacional 3 —2.15t0 1.44 102 0.66 0.82 0.45
Salminen et al[25] Retention in IAM chromatography 3 —-0.71t0 1.3 21 0.85 n.a. 0.27
and other descriptors
This work Retention in BMC and total molar 2 —1.42to 151 42 0.75 0.70 0.39
charge
Retention in BMC 1 —~1.42 to 1.51 41 0.74 0.69 0.39
a Venetian blinds cross-validation.
b Leave-one-out cross-validation.
0.5) [12], the model assign correctly the 71% of BBB
compounds and 80% of the BBBcompounds.

The quantitative use of the models imply the evalua- (A) 2.0 , , , , , , ,
tion of their predictive ability. For this purpose, the fit - .
error (the root-mean-squared error of calibration, RM- 15— —
SEC) and the prediction error based on random Vene- r LY
tian blinds cross-validation (root-mean-squared error of 10 m@q; 7
cross-validation, RMSECV) were obtained: RMSEE a [ © N
0.3792; RMSECV = 0.4208, Eq. (2) and RMSEC = 2 7| @ i
0.3784; RMSECV= 0.4138,Eq. (3) As can be observed, % 00k Py ® e |
the RMSEC and RMSECV values were similar in both © L + & i

. . 5 Q (0]
cases, which suggest the robustness of the models is rea- 3 -05|- &9 _
sonably adequate. o = o & ° gzg% g

Fig. 2 shows the predicted versus experimental (fitted -1.0 [~ + —
and cross-validated) values of brain/blood distribution coef- " 7
ficients, obtained fronEgs. (2) to (3)(Fig. 2A and B. As 15— .
can be observed, the ability of the proposed models to de- 20 o L il L]
scribe and predict brain penetration is adequate. The QSAR 20 -15 -1.0 -05 00 05 1.0 15 20
models obtained using the I&gvalues instead of loksuc, Experimental logBB
showed the same trend described, but worse statistical pa-
rameter values were obtained. (B8) 20 | | —— | | |
logBB = (—0.55+0.14) + (0.26 + 0.05) log P 15+ —

+(0.47+ 014« (4) ok 3@9 ]

2 =059 SE.=051; F=28 N =41 P<0.0001 o o - 3 ; (p@e ]

log BB = (—0.60+ 0.12) + (0.35+ 0.04) log P (5) s I s ]
©

12 =062 SE =047, F=61 N =40, P < 0.0001 g 0o ; 9,/ ® ]
e}

Using the retention data of a reduced number of com- 3 05 B 54 % egﬁz ]
pounds, selected in order to cover a wide logBB range 10k  + © ? _
(—1.42 to 1.44), a similar model tAq. (3) was obtained. L o 4
The selected anioni¢z = 3), cationic (n = 4), and neu- -15 —
tral (n = 3) compounds were: atenolol, salicylic acid, - -
acetylsalicylic, ibuprofen, carbamazepine, alprazolam, mi- ot L L1 L L L

20 -15 -10 05 00 05 1.0 15 20

dazolam, mianserine, promazine, and trifluoperazine. These
compounds showed residual values lower than 0.5 in many
QSAR models proposed in literature (Sesble 3.

Experimental logBB

Fig. 2. Validation plots: predicted log BB vs. actual log BB values obtained

using (A) Eg. (2) and (B) Eq. (3) (O) Fitted and §) cross-validated

log BB = (—1.340.12) + (1.04+ 0.08) logkgmc (6)

data are shown.
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Table 3

Experimental and predicted log BB values

Compound Name Experimental Predicted log BB values

number logBB values £ "2)  Eq (3) Ref.[13]  Ref.[8]  Ref.[12]  Ref.[15]
1 Cimetidine —1.42 —0.58 —0.64 -0.77 -1.19 -1.01

2 Atenolol —1.42 —0.74 -1.15 —0.93 —1.36

3 Indomethacin —1.26 -0.34 0.14 —0.92 —1.03 -1.15 -0.77

4 Ranitidine -1.23 —0.46 —0.78 —0.02 —0.61 —0.85

5 Salicylic acid -1.10 —-0.82 -0.41 —0.87 -1.21 —0.66 —0.86

6 Verapamil -0.70 0.90 0.73 -1.11 -0.96 -0.78

7 Acetylsalicylic acid —0.50 -0.80 -0.39 -0.75 -1.18 —-0.52 -0.59

8 Carbamazepine epoxide —0.34 —-0.24 —0.16

9 Acetaminophen -0.31 —-0.38 -0.32 -1.22

10 Theophylline —0.29 -0.71 —0.68 -0.91 -0.51 —0.96 —0.32

11 Ibuprofen —0.18 -0.34 0.13 -0.23 —0.56 0.22 -0.14

12 Ethanol —0.16 —0.84 —0.85 -0.41 —0.23

13 1-Propanol —0.16 -0.72 -0.71 —0.26 —0.06 -0.14

14 Antipyrine -0.10 —-0.61 —0.58 —-0.24 0.47 0.50 0.34
15 Carbamazepine -0.07 0.03 0.14 0.31 0.17
16 Caffeine —0.06 —0.67 —0.65 —0.39 -0.22 —0.87 0.06
17 Phenytoin —0.04 0.24 0.42 —0.55

18 Amobarbital 0.04 0.20 0.46 0.05

19 Alprazolam 0.04 0.23 0.34 —0.03 0.33 —0.38 0.64
20 Flunitrazepam 0.06 0.26 0.41 —-0.09

21 Hexobarbital 0.1 0.09 0.27 0.10

22 Clonidine 0.11 0.12 —0.10 —0.42 0.46 —0.44

23 Pentobarbital 0.12 0.29 0.52 0.12 -0.19 —0.54 —0.76

24 Thioridazine 0.24 1.33 121 1.20 1.06 0.78 0.89
25 Clobazan 0.35 0.21 0.35 0.49

26 Midazolam 0.36 0.42 0.56 0.49 0.40 0.41 0.29
27 Benzene 0.37 0.37 0.52 0.33 0.55 0.57
28 Toluene 0.37 0.51 0.69 0.48 0.69 0.51
29 Hydroxyzine 0.39 0.54 0.59 0.45 0.13 —0.88 0.02
30 Pyrilamine 0.50 0.73 0.53

31 Diazepam 0.52 0.36 0.51 0.69

32 Codeine 0.55 0.40 0.20 -0.22 0.27 0.54 -0.29

33 Oxazepam 0.61 0.19 0.33 0.58 —0.48 —0.66 —0.53

34 Propranolol 0.64 0.70 0.49 0.17
35 Amitriptyline 0.90 1.25 1.12 0.74 0.84
36 Mianserin 0.99 0.88 0.98 0.69 0.91
37 Imipramine 1.06 1.34 1.22 0.69 0.92 0.83
38 Chlorpromazin 1.06 1.30 117 0.38 0.71 0.42 0.88
39 Desipramine 1.2 0.83 0.63 0.71 0.43 0.42 0.44
40 Promazine 1.23 1.15 1.01 0.84 0.83 0.65 0.97
41 Haloperidol 1.34 0.95 0.82 0.80 -0.27
42 Bromperidol 1.38 1.01 0.86 0.90
43 Trifluoperazine 1.44 1.33 1.27 1.09 0.46 0.26
44 Fluphenazine 151 0.91 0.80 0.45
2 =096, SE. =0.20, n =10, F = 187 P < 0.0001 acteristics of the models proposed in the present paper. As

can be observed, in computational approaches the num-
This calibration set can be used to check the stability of the ber of descriptor variables and compounds used to perform
proposed model under intermediate precision conditions andthe model obviously is higher than in the experimental ap-
to check the reproducibility for interlaboratory comparisons. proaches. The range of log BB values studied is very similar

in all approaches, except in the model reported by Salminen
3.3. Comparison with other QSAR and in vitro approaches et al. [25] because they considered as outliers compounds

such as cimetidine, ranitidine, indomethacine and salicylic

As it has been indicated in the introduction section differ- acid which show low log BB values. The R-squared statistic

ent in vitro, mathematical and chromatographic approachesin cross-validation valuesR%V) and the standard error of
have been developed to estimate brain—blood distribution estimates are similar in all cases.
coefficients.Table 2summarizes the characteristics of some  In Table 3 the predicted values for the compounds used
log BB models reported in literature together with the char- in this study obtained usinggs. (2) and (3)and the re-



200 L. Escuder-Gilabert et al. / J. Chromatogr. B 807 (2004) 193-201

2 - (A)
1.5 4
14
0.5 4
0 4
-0.5 A 7 10 13 16 19 22 25 28 31 34 37 40 43
-1 4
154
2 4 © 24 (D)

-0.5 A 7 10 13 16 19 22 25 28 31 34 37 40 43 051 4 7 10 13116 19 22 |p5 31 34 37 40 43
-1 4 -1

15 -1.5
2 (B 24 ]

1.5 4 1.5 4
1 14

0.5 | 0.5
0 4 04

-0.5 5 28 31 34 37 40 43 -0.5 A 22 |p5 28 31 34 37 40 43
-1+ -1 4

15 154

Fig. 3. Residual plots for compounds studied in this work obtained for different QSAR models. (A) BMC &gd&) (B) BMC model Eqg. (3) (C)
model from referenc§l3], (D) model from referencé], (E) model from referencgl?], (F) model from referencfl5]. Compounds have been ordered
according to their experimental log BB values (number§aile J).

ported in literature using different QSAR models are shown. ship between PC and the lggvc values was statistically
The mean absolute errors for the different models were significant at the 95% confidence level. From the results it
0.296 (n = 42), 0.316(n = 41), 0.348(n = 37), 0.427 can be concluded that the two approaches, BMC, and BB-
(n = 25), 0.459(n = 25), and 0.381(n = 28) for predic- MEC, are comparable and useful in the estimating of drug
tions obtained usingqgs. (2) and (3)and reported in refs.  blood-brain penetration.

[13,8,12,15] respectively. As can be observed, the proposed
BMC models show better or at least comparable predictive
ability than other reported QSAR modelsg. 3 shows the
residual plots obtained for the compounds studied in this ]
work.

Endothelial cell lines (BBMEC) from bovine brain mi- 80.00 —
crovessels have been developed as an in vitro model for
transport studies across the blood brain barrier. The rela-
tionship between in vitro permeability in BBMEC lines 60.00 —
and BMC retention was evaluated. For this purpose, the
permeability data (PG 10*cm/s) of a set of eight drugs
(acyclovir, caffeine, antipyrine, propranolol, estrone, pro- 40.00 —
gesterone, testosterone, and haloperidol) reported by Lom-
bardo et al[10] using BBMEC lines were correlated with
the retention factors in BMC using a 0.04M Brij35 mobile 20.00 —
phase. A linear relationship was obtainddg 4) and the
fitted equation to the data was: 7

PCx 10% = (34+ 5) + (32+ 3)logksmc @) 0.00 — T T

2 o e o -1.00 0.00 1.00 2.00 3.00
=094 SE. =87, n=7, F =855 logk(BMC)
Where the numbers' _m parenthesis are the 9°”f'dence IIm'Fig. 4. Relationship between the logarithm of retention factors obtained
its at a 95% probability level. ThE-value obtained for the  in BMC using 0.04 M Brij35 as mobile phase for a heterogeneous set of
model was lower than 0.05, which indicates that the relation- drugs and the PC values obtained in BBMEC.

00.00 —

PCx104
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3.4. Advantages and limitations of the BMC models

The BMC technique is a promising tool for ranking BBB

drug penetration, and it offers the practical advantages of be-
ing easily automated, time-saving and highly reproducible.

However, BMC also has the limitation that it may fail

201

[9] M. Feher, E. Sourial, J.M. Schmidt, Int. J. Pharm. 201 (2000) 239.

[10] F. Lombardo, J.F. Blake, W.J. Curatolo, J. Med. Chem. 39 (1996)
4750.

[11] J. Kelder, P.D.J. Grootenhuis, D.M. Bayada, L.P.C. Delbressine, J.P.
Ploemen, Pharm. Res. 16 (1999) 1514.

[12] F. Ooms, P. Weber, P.A. Carrupt, B. Testa, Biochim. Biophys. Acta
1587 (2002) 118.

when other processes such as carrier-mediated transport oft3] J-A. Platts, M.H. Abraham, Y.H. Zhao, A. Hersey, L. ljaz, D. Butina,

metabolism limit brain uptake; whereas if the rate-limiting
step for permeation across the BBB is the partitioning of
the drug into the brain endothelial cell membrane, BMC
will be successful.

4. Conclusions

The results presented here indicate that the retention

of compounds in biopartitioning micellar chromatography,
BMC, is capable of describing and predicting in vitro the

blood—brain barrier penetration. Therefore, it can be used to

identify the blood brain barrier penetration ability of drugs
at an early stage of the drug discovery process.

The comparison with other QSAR models proposed re-
veals that the BMC models are better or at least comparable

from a statistical point of view. In addition, due to the high

Eur. J. Med. Chem. 36 (2001) 719.

[14] U. Norinder, P. Sjoberg, T. Osterberg, J. Pharm. Sci. 87 (1998) 952.

[15] K. Rose, L.H. Hall, J. Chem. Inf. Comput. Sci. 42 (2002) 651.

[16] L.S. Glynn, M. Yazdanian, J. Pharm. Sci. 87 (1998) 306.

[17] R.A. Conrodi, P.S. Burton, R.T. Borchardt, in: V. Pliska, B. Testa,
H. Van de Walerbeemd (Eds.), Lipophilicity in Drug Action and
Toxicology, VCH, Weinherm Ed., 1996, p. 233.

[18] W.M. Pardridge, Adv. Drug. Deliv. Rev. 15 (1995) 5.

[19] M.D. Abraham, H.S. Chadka, in: V. Pliska, B. Testa, H. Van de
Walerbeemd (Eds.), Lipophilicity in Drug Action and Toxicology,
VCH, Weinherm Ed., 1996, p. 311.

[20] H. Van de Wterbeemd, M. Kansy, Chimia 46 (1992) 299.

[21] V.A. Levin, J. Med. Chem. 23 (1980) 682.

[22] E.M. Cornford, L.D. Braun, W.H. Oldendorf, M.A. Hill, Am. J.
Physiol. 243 (1982) 161c.

[23] S. Ong;, H. Liu, C. Pidgeon, J. Chromatogr. A 728 (1996) 113.

[24] Y. Zhang, Z. Cheng-Ming, L. Yi-Ming, S. Hjerten, P. Lundahl, J.
Chromatogr. A 749 (1996) 13.

[25] T. Salminen, A. Pulli, J.J. Taskinen, J. Pharm. Biomed. Anal. 15
(1997) 470.

[26] A. Reichel, D.J. Begley, Pharm. Res. 15 (1998) 1270.

number of parameters used to develop the QSAR models,[27] C. Quifiones-Torrelo, Y. Mairt-Biosca, J.J. Martinez-Pla, S. Sagrado,

the number of experimental data needed to obtain a statis-

tical validated model is also high, mainly when multiple

linear regression is used. The use of as few descriptors a

possible has been recommendd8]. The BMC method-
ology is less expensive than cell culture models or in vivo
models and minimum experimentation is required.
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